The

Complete
Reference

C++ defines two types of libraries. The first is the standard function

library. This library consists of general-purpose, stand-alone functions
that are not part of any class. The function library is inherited from C.
The second library is the object- oriented class library. Part Three of the
book provides a reference to the standard function library. Part Four

describes the class library.

The standard function library is divided into the following categories:

m /0

String and character handling
Mathematical

Time, date, and localization

Dynamic allocation

Miscellaneous

B Wide-character functions

The last category was added to Standard C in 1995 and was subsequently incorporated
“into C++. It provides wide-character (wchar_t) equivalents to several of the library
functions. Frankly, the use of the wide-character library has been very limited, and
C++ provides a better way of handling wide-character environments, but it is briefly
described in Chapter 31 for completeness.

C99 added some new elements to the C function library. Several of these additions,
such as support for complex arithmetic and type-generic macros for the mathematical
functions, duplicate functionality already found in C++. Some provide new features
that might be incorporated into C++ in the future. In all cases, the library elements
added by C99 are incompatible with C++. Thus, the additions made to the Standard
C library by C99 are not discussed in this book.

One last point: All compilers supply more functions than are defined by Standard
C/C++. These additional functions typically provide for operating-system interfacing
and other environment-dependent operations. You will want to check your compiler’s
documentation.

The
Complete

Reference

700 C++: The Complete Reference

supported by Standard C++. While you will usually want to use C++'s object-

oriented I/O system for new code, there is no fundamental reason that you
cannot use the C I/O functions in a C++ program when you deem it appropriate.
The functions in this chapter were first specified by the ANSI C standard, and they
are commonly referred to collectively as the ANSI C I/O system.

The header associated with the C-based I/O functions is called <cstdio>. (A C program
must use the header file stdio.h.) This header defines several macros and types used by
the file system. The most important type is FILE, which is used to declare a file pointer.
Two other types are size_t and fpos_t. The size_t type (usually some form of unsigned
integer) defines an object that is capable of holding the size of the largest file allowed by
the operating environment. The fpos_t type defines an object that can hold all information
needed to uniquely specify every position within a file. The most commonly used macro
defined by the headers is EOF, which is the value that indicates end-of-file.

Many of the I/O functions sct the built-in global integer variable errno when an
error occurs. Your prograrm can check this variable when an error occurs to obtain
more information about the error. The values that errno may take are implementation
dependent.

For an overview of the C-based /O system, see Chapters 8 and 9 in Part One.

I This chapter describes the character-based 1/O functions. These are the functions that

: ' were originally defined for Standard C and C++ and are, by far, the most widely used.
In 1995, several wide-character (wchar_t) functions were added, and they are briefly
described in Chapter 31.

This chapter describes the C-based 1/0 functions. These functions are also

clearerr

#include <cstdio>
void clearerr (FILE *stream);

The clearerr() function resets (i.e., sets to zero) the error flag associated with the
stream pointed to by stream. The end-of-file indicator is also reset.

The error flags for each stream are initially set to zero by a successful call to fopen().

File errors can occur for a wide variety of reasons, many of which are system
dependent. The exact nature of the error can be determined by calling perror(), which
displays what error has occurred (see perror()).

Related functions are feof(), ferror(), and perror().

Chapter 25: The C-Based /0 Functions

fclose

#include <cstdio>
int fclose(FILE *stream);

The fclose() function closes the file associated with stream and flushes its buffer.
After an fclose(), stream is no longer connected with the file, and any automatically
allocated buffers are deallocated.

If flose() is successful, zero is returned; otherwise EOF is returned. Trying to close
a file that has already been closed is an error. Removing the storage media before
closing a file will also generate an error, as will lack of sufficient free disk space.

Related functions are fopen(), freopen(), and fflush().

feof

#include <cstdio>
int feof (FILE *stream);

The feof() function checks the file position indicator to determine if the end of the
file associated with streant has been reached. A nonzero value is returned if the file position
indicator is at end-of-file; zero is returned otherwise.

Once the end of the file has been reached, subsequent read operations will return
EOF until either rewind() is called or the file position indicator is moved using fseek().

The feof() function is particularly useful when working with binary files because
the end-of-file marker is also a valid binary integer. Explicit calls must be made to
feof() rather than simply testing the return value of getc(), for example, to determine
when the end of a binary file has been reached.

Related functions are clearerr(), ferror(), perror(), putc(), and getc().

ferror

#include <cstdio>
int ferror (FILE *stream);

The ferror() function checks for a file error on the given strean. A return value of
zero indicates that no error has occurred, while a nonzero value means an error.

701

702

C++: The Complete Reference

To determine the exact nature of the error, use the perror() function.
Related functions are clearerr(), feof(), and perror().

fflush

#include <cstdio>
int fflush(FILE *stream);

If stream is associated with a file opened for writing, a call to fflush() causes the
contents of the output buffer to be physically written to the file. The file remains open.

A return value of zero indicates success; EOF indicates that a write error has
occurred.

All buffers are automatically flushed upon normal termination of the program or
when they are full. Also, closing a file flushes its buffer.

Related functions are fclose(), fopen(), fread(), fwrite(), getc(), and putc().

fgetc

#include <cstdio>
int fgetc(FILE *stream);

The fgetc() function returns the next character from the input stream from the
current position and increments the file position indicator. The character is read as
an unsigned char that is converted to an integer.

If the end of the file is reached, fgetc() returns EOF. However, since EOF is a valid
integer value, when working with binary files you must use feof() to check for the end
of the file. If fgetc() encounters an error, EOF is also returned. If working with binary
files, you must use ferror() to check for file errors.

Related functions are fputc(), getc(), putc(), and fopen().

fgetpos

#include <cstdio>
int fgetpos(FILE *stream, fpos_t *position);

Chapter 25: The C-Based 1/0 Functions 703

The fgetpos() function stores the current value of the file position indicator in the
object pointed to by position. The object pointed to by position must be of type fpos_t.
The value stored there is useful only in a subsequent call to fsetpos().

If an error occurs, fgetpos() returns nonzero; otherwise it returns zero.

Related functions are fsetpos(), fseek(), and ftell().

fgets

#include <cstdio>
char *fgetsichar *str, int num, FILE *stream);

The fgets() function reads up to num-1 characters from streain and places them into
the character array pointed to by str. Characters are read until either a newline or an
EOF is received or until the specified limit is reached. After the characters have been
read, a null is placed in the array immediately after the last character read. A newline
character will be retained and will be part of the array pointed to by str.

If successful, fgets() returns str; a null pointer is returned upon failure. If a read
error occurs, the contents of the array pointed to by str are indeterminate. Because
a null pointer will be returned when either an error has occurred or when the end
of the file is reached, you should use feof() or ferror() to determine what has actually
happened.

Related functions are fputs(), fgetc(), gets(), and puts().

fopen

#include <cstdio>
FILE *fopen(const char *fname, const char *mode);

The fopen() function opens a file whose name is pointed to by fnanie and returns
the stream that is associated with it. The type of operations that will be allowed on the
file are defined by the value of mode. The legal values for mode are shown in Table 25-1.
The filename must be a string of characters comprising a valid filename as defined by the
operating system and may include a path specification if the environment supports it.

If fopen() is successful in opening the specified file, a FILE pointer is returned.

If the file cannot be opened, a null pointer is returned.

C++: The Complete Reference

Mode Meaning

r Open text file for reading.

w" Create a text file for writing.

"a" Append to text file.

"rb" Open binary file for reading.

"wb" Create binary file for writing.

“ab" Append to a binary file.

r+" Open text file for read /write.

"w+" Create text file for read /write.

"a+" Open text file for read/write.

"rb+" or "r+b" Open binary file for read/write.

"wb+" or "w+b" Create binary file for read /write.

"ab+" or "a+b" Open binary file for read /write.
Table 25-1. The Legal Values for the mode Parameter of fopen()

As the table shows, a file may be opened in either text or binary mode. In text
mode, some character translations may occur. For example, newlines may be converted
into carriage return/linefeed sequences. No such translations occur on binary files.

The correct method of opening a file is illustrated by this code fragment:

FILE *fp;

if ((fp = fopen("test", "w"))==NULL) {
printf ("Cannot open file.\n");
exit (1) ;

}

This method detects any error in opening a file, such as a write-protected or a full disk,
before attempting to write to it.

If you use fopen() to open a file for output, any preexisting file by that name will
be erased and a new file started. If no file by that name exists, one will be created.

Chapter 25: The C-Based 1/0 Functions 705

Opening a file for read operations requires that the file exists. If it does not exist, an
error will be returned. If you want to add to the end of the file, you must use mode "a."
If the file does not exist, it will be created.

When accessing a file opened for read/write operations, you cannot follow an
output operation with an input operation without an intervening call to either fflush(),
fseek(), fsetpos(), or rewind(). Also, you cannot follow an input operation with an
output operation without an intervening call to one of the previously mentioned
functions, except when the end of the file is reached during input. That is, output
can directly follow input at the end of the file.

Related functions are fclose(), fread(), fwrite(), putc(), and getc().

fprintf

#include <cstdio>
int fprintf(FILE *stream, const char *format, ...);

The fprintf() function outputs the values of the arguments that comprise the
argument list as specified in the format string to the stream pointed to by strean.
The return value is the number of characters actually printed. If an error occurs,
a negative number is returned.

There may be from zero to several arguments, with the maximum number being
system dependent.

The operations of the format control string and commands are identical to those in
printf(); see printf() for a complete description.

Related functions are printf() and fscanf().

fputc

@

#include <cstdio>
int fputc(int ch, FILE *stream);

The fputc() function writes the character ¢/ to the specified stream at the current
file position and then advances the file position indicator. Even though ¢/ is declared
to be an int for historical reasons, it is converted by fputc() into an unsigned char.
Because all character arguments are elevated to integers at the time of the call, you
will generally see character values used as arguments. If an integer were used, the
high-order byte(s) would simply be discarded.

The value returned by fpute() is the value of the character written. If an error
occurs, EOF is returned. For files opened for binary operations, an EOF may be a valid
character, and the function ferror() will need to be used to determine whether an error
has actually occurred.

706 C++: The Complete Reference

Related functions are fgetc(), fopen(), fprintf(), fread(), and fwrite().
fputs

#include <cstdio>
int fputs(const char *str, FILE *stream) ;

The fputs() function writes the contents of the string pointed to by str to the
specified stream. The null terminator is not written.

The fputs() function returns nonnegative on success and EOF on failure.

If the stream is opened in text mode, certain character translations may take place.
This means that there may not be a one-to-one mapping of the string onto the file.
However, if the stream is opened in binary mode, no character translations will occur,
and a one-to-one mapping between the string and the file will exist.

Related functions are fgets(), gets(), puts(), fprintf(), and fscanf().

fread

#include <cstdio>
size_t fread(void *buf, size_t size, size_t count,
FILE *stream);

The fread() function reads count number of objects, each object being size bytes in
length, from the stream pointed to by stream and places them in the array pointed to by
buf. The file position indicator is advanced by the number of characters read.

The fread() function returns the number of items actually read. If fewer items are
read than are requested in the call, either an error has occurred or the end of the file has
been reached. You must use feof() or ferror() to determine what has taken place.

If the stream is opened for text operations, certain character translations, such as
carriage return/linefeed sequences being transformed into newlines, may occur.

Related functions are fwrite(), fopen(), fscanf(), fgetc(), and getc().

freopen

#include <cstdio>
FILE *freopen(const char *fname, const char *mode,
FILE *streaa);

Chapter 25: The C-Based I/0 Functions

The freopen() function associates an existing stream with a different file. The new
file's name is pointed to by fname, the access mode is pointed to by mode, and the stream
to be reassigned is pointed to by stream. The string mode uses the same format as fopen();
a complete discussion is found in the fopen() description.

When called, freopen() first tries to close a file that may currently be associated
with stream. However, if the attempt to close the file fails, the freopen() function still
continues to open the other file.

The freopen() function returns a pointer to stream on success and a null pointer
otherwise.

The main use of freopen() is to redirect the system defined streams stdin, stdout,
and stderr to some other file.

Related functions are fopen() and fclose().

fscanf

#include <cstdio>
int fscanf (FILE *stream, const char *format, ...);

The fscanf() function works exactly like the scanf() function, except that it reads
the information from the stream specified by stream instead of stdin. See scanf()
for details.

The fscanf() function returns the number of arguments actually assigned values.
This number does not include skipped fields. A return value of EOF means that
a failure occurred before the first assignment was made.

Related functions are scanf() and fprintf().

fseek

#include <cstdio>»
int fseek(FILE *stream, long offset, int origin:;

The fseek() function sets the file position indicator associated with stream according
to the values of offset and origin. Its purpose is to support random-access 1/O operations.
The offset is the number of bytes from origin to seek to. The values for origin must be
one of these macros (defined in <cstdio>).

707

708

C++: The Complete Reference

Name Meaning

SEEK_SET Seek from start of file
SEEK_CUR Seek from current location
SEEK_END Seek from end of file

A return value of zero means that fseek() succeeded. A nonzero value
indicates failure.

You may use fseek() to move the position indicator anywhere in the file,
even beyond the end. However, it is an error to attempt to set the position indicator
before the beginning of the file.

The fseek() function clears the end-of-file flag associated with the specified stream.
Furthermore, it nullifies any prior ungetc() on the same stream (see ungetc()).

Related functions are ftell(), rewind(), fopen(), fgetpos(), and fsetpos().

fsetpos

#include <cstdio>

int fsetpos(FILE *stream, const fpos_t *position);

The fsetpos() function moves the file position indicator to the point specified by
the object pointed to by position. This value must have been previously obtained
through a call to fgetpos(). After fsetpos() is executed, the end-of-file indicator is
reset. Also, any previous call to ungetc() is nullified.

If fsetpos() fails, it returns nonzero. If it is successful, it returns zero.

Related functions are fgetpos(), fseek(), and ftell().

ftell

#include <cstdio>
long ftell(FILE *stream);

The ftell() function returns the current value of the file position indicator for
the specified stream. In the case of binary streams, the value is the number of bytes the
indicator is from the beginning of the file. For text streams, the return value may not be
meaningful except as an argument to fseek() because of possible character translations,
such as carriage return/ linefeeds being substituted for newlines, which affect the
apparent size of the file.

The ftell() function returns —1 when an error occurs.

Chapter 25: The C-Based 1/0 Functions 709

Related functions are fseek() and fgetpos().
fwrite

#include <cstdio>
size_t fwrite(const void *huf, size_ t size,
size_ t count, FILE *stream);

The fwrite() function writes count number of objects, each object being size bytes
in length, to the stream pointed to by stream from the character array pointed to by buf.
The file position indicator is advanced by the number of characters written.

The fwrite() function returns the number of items actually written, which, if the
function is successful, will equal the number requested. If fewer items are written than
are requested, an error has occurred.

Related functions are fread(), fscanf(), getc(), and fgetc().

getc

#include <cstdio>
int getc(FILE *stream);

The getc() function returns the next character from the input stream and increments
the file position indicator. The character is read as an unsigned char that is converted to
an integer.

If the end of the file is reached, getc() returns EOF. However, since EOF is a valid
integer value, when working with binary files you must use feof() to check for the
end-of-file character. If getc() encounters an error, EOF is also returned. If working
with binary files, you must use ferror() to check for file errors.

The functions getc() and fgetc() are identical, and in most implementations getc()
is simply defined as the macro shown here.

#define getc(fp) fygetc(fp)

This causes the fgetc() function to be substituted for the getc() macro.
Related functions are fputc(), fgete(), putc(), and fopen().

710 C++: The Complete Reference

getchar

#include <cstdio>
int getchar (void) ;

The getchar() function returns the next character from stdin. The character is read
as an unsigned char that is converted to an integer.

If the end of the file is reached, getchar() returns EOF. If getchar() encounters an
error, EOF is also returned.

The getchar() function is often implemented as a macro.

Related functions are fputc(), fgetc(), putc(), and fopen().

gets

#include <cstdio>

char *gets(char *str);

The gets() function reads characters from stdin and places them into the character
array pointed to by str. Characters are read until a newline or an EOF is received. The
newline character is not made part of the string; instead, it is translated into a null to
terminate the string.

If successful, gets() returns str; a null pointer is returned upon failure. If a read
error occurs, the contents of the array pointed to by str are indeterminate. Because
a null pointer will be returned when either an error has occurred or when the end
of the file is reached, you should use feof() or ferror() to determine what has actually
happened.

There is no way to limit the number of characters that gets() will read, and
it is possible for the array pointed to by str to be overrun. Thus, gets() is inherently
dangerous.

Related functions are fputs(), fgetc(), fgets(), and puts().

perror

#include <cstdio>
void perror (const char *str);

Chapter 25: The C-Based 1/0 Functions

The perror() function maps the value of the global variable errno onto a string and
writes that string to stderr. If the value of str is not null, it is written first, followed by
a colon, and then the implementation-defined error message.

printf

#include <cstdio>

int printf(const char *format, ...);

The printf() function writes to stdout the arguments that comprise the argument
list as specified by the string pointed to by format.

The string pointed to by format consists of two types of items. The first type is made
up of characters that will be printed on the screen. The second type contains format
specifiers that define the way the arguments are displayed. A format specifier begins
with a percent sign and is followed by the format code. There must be exactly the same
number of arguments as there are format specifiers, and the format specifiers and the
arguments are matched in order. For example, the following printf() call displays
"Hi ¢ 10 there!".

§ printf ("Hi %c %4 %s", 'c', 10, "there!");

If there are insufficient arguments to match the format specifiers, the output is
undefined. If there are more arguments than format specifiers, the remaining arguments
are discarded. The format specifiers are shown in Table 25-2.

The printf() function returns the number of characters actually printed. A negative
return value indicates that an error has taken place.

The format codes may have modifiers that specify the field width, precision, and
a left-justification flag. An integer placed between the % sign and the format code acts
as a minimum field-width specifier. This pads the output with spaces or 0's to ensure
that it is at least a certain minimum length. If the string or number is greater than that
minimum, it will be printed in full, even if it overruns the minimum. The default
padding is done with spaces. If you wish to pad with 0's, place a 0 before the field-width
specifier. For example, %05d will pad a number of less than five digits with 0's so that
its total length is 5.

The exact meaning of the precision modifier depends on the format code being
modified. To add a precision modifier, place a decimal point followed by the precision
after the field-width specifier. For e, E, and f formats, the precision modifier determines

711

C++: The Complete Reference

Code Format
YoC Character
Yd Signed decimal integers
Yol Signed decimal integers
Yoe Scientific notation (lowercase e)
Y%k Scientific notation (uppercase E)
Yot Decimal floating point
Yog Uses %e or %f, whichever is shorter (if %e, uses lowercase e)
%G Uses %E or %f, whichever is shorter (if %E, uses uppercase E)
%0 Unsigned octal
%s String of characters
You Unsigned decimal integers
Yox Unsigned hexadecimal (lowercase letters)
“oX Unsigned hexadecimal (uppercase letters)
Yop Displays a pointer
%n The associated argument is a pointer to an integer into which is
placed the number of characters written so far
%% Prints a % sign
Table 25-2. The printf() Format Specifiers

the number of decimal places printed. For example, %10.4f will display a number
at least 10 characters wide with four decimal places. When the precision modifier is
applied to the g or G format code, it determines the maximum number of significant
digits displayed. When applied to integers, the precision modifier specifies the
minimum number of digits that will be displayed. Leading zeros are added, if
necessary.

When the precision modifier is applied to strings, the number following the period
specifies the maximum field length. For example, %5.7s will display a string that will

Chapter 25: The C-Based 1/0 Functions 713

be at least five characters long and will not exceed seven. If the string is longer than the
maximum field width, the characters will be truncated off the end.

By default, all output is right-justificd: if the field width is larger than the data printed,
the data will be placed on the right edge of the field. You can force the information
to be left-justified by placing a minus sign directly after the %. For example, %-10.2f
will left-justify a floating-point number with two decimal places in a 10-character field.

There are two format modifiers that allow printf() to display short and long integers.
These modifiers may be applied to the d, i, 0, u, and x type specifiers. The 1 modifier
tells printf() that a long data type follows. For example, %1d means that a long integer
is to be displayed. The h modifier tells printf() to display a short integer. Therefore,
%hu indicates that the data is of type short unsigned integer.

If you are using a modern compiler that supports the wide-character features added
in 1995, then you may use the 1 modifier with the ¢ specifier to indicate a wide-character
of type wchar_t. You may also use the] modifier with the s format command to indicate
a wide-character string.

An L modifier may prefix the floating-point commands of e, f, and g and indicates
that a long double follows.

The %n command causes the number of characters that have been written at the
time the %n is encountered to be placed in an integer variable whose pointer is specified
in the argument list. For example, this code fragment displays the number 14 after the
line "This is a test™

int 1;

printf("This is a test%n", &1);

printf ("sd", 1);

You can apply the 1 or h modifer to the n specifier to indicate that the corresponding
argument points to a long or short integer, respectively.

The # has a special meaning when used with some printf() format codes. Preceding
ag G, feorE code with a # ensures that the decimal point will be present, even if there
are no decimal digits. If you precede the x or X format code with a #, the hexadecimal
number will be printed with a 0x prefix. If you precede the o format with a #, the octal
value will be printed with a 0 prefix. The # cannot be applied to any other format specifiers.

The minimum field-width and precision specifiers may be provided by arguments
to printf() instead of by constants. To accomplish this, use an * as a placeholder. When
the format string is scanned, printf() will match each * to an argument in the order in
which they occur.

Related functions are scanf() and fprintf()

714 C++: The Complete Reference

putc

#include <cstdio>
int putc(int ch, FILE *stream):

The putc() function writes the character contained in the least significant byte of ch
to the output stream pointed to by stream. Because character arguments are elevated to
integer at the time of the call, you may use character values as arguments to putc().

The putc() function returns the character written on success or EOF if an error
occurs. If the output stream has been opened in binary mode, EOF is a valid value
for ch. This means that you must use ferror() to determine if an error has occurred.

Related functions are fgetc(), fputc(), getchar(), and putchar().

putchar

#include <cstdio>
int putchar (int ch);

The putchar() function writes the character contained in the least significant byte
of ch to stdout. It is functionally equivalent to putc(ch, stdout). Because character
arguments are elevated to integer at the time of the call, you may use character values
as arguments to putchar().

The putchar() function returns the character written on success or EOF if an error
occurs.

Arrelated function is putc().

puts

#include <cstdio>
int puts(const char *str):

The puts() function writes the string pointed to by str to the standard output
device. The null terminator is translated to a newline.

The puts() function returns a nonnegative value if successful and ar EOF
upon failure.

Related functions are putc(), gets(), and printf().

Chapter 25: The C-Based 1/0 Functions

remove

#include <cstdio>
int remove{const char *fname);

The remove() function erases the file specified by frane. It returns zero if the file
was successfully deleted and nonzero if an error occurred.
A related function is rename().

rename

#include <cstdio>
int rename (const char *oldfname, const char *newfname);

The rename() function changes the name of the file specified by oldfnanie to
newfname. The newfname must not match any existing directory entry.

The rename() function returns zero if successful and nonzero if an error
has occurred.

A related function is remove().

rewind

#include <cstdio>
void rewind(FILE *stream);

The rewind() function moves the file position indicator to the start of the specified
stream. It also clears the end-of-file and error flags associated with stream. It has no

return value.
A related function is fseek().

scanf

#include <cstdio>
int scanf (const char *format, ...);

715

716

C++: The Complete Reference

The scanf() function is a general-purpose input routine that reads the stream stdin
and stores the information in the variables pointed to in its argument list. It can read all
the built-in data types and automatically convert them into the proper internal format.

The control string pointed to by format consists of three classifications of characters:

Format specifiers
White-space characters
Non-white-space characters

The input format specifiers begin with a % sign and tell scanf() what type of data is
to be read next. The format specifiers are listed in Table 25-3. For example, %s reads a
string while %d reads an integer. The format string is read left to right and the format
specifiers are matched, in order, with the arguments that comprise the argument list.

Code Meaning

Yo Reads a single character.

Yod Reads a decimal integer.

Yol Reads an integer.

%oe Reads a floating-point number.
Yo Reads a floating-point number.
%g, Reads a floating-point number.
%0 Reads an octal number.

%S Reads a string.

Yox Reads a hexadecimal number.
%op Reads a pointer.

%n Receives an integer value equal to the number of characters read so far.
“ou Reads an unsigned integer.

%l] Scans for a set of characters.
%% Reads a percent sign.

Table 253. The scanf() Format Specifiers

Chapter 25: The C-Based 1/0 Functions 717

To read a long integer, put an 1 (¢/l) in front of the format specifier. To read a short
integer, put an h in front of the format specifier. These modifiers can be used with the
d, i, 0, u, and x format codes.

By default, the f, e, and g specifiers instruct scanf() to assign data to a float. If you
put an 1 (ell) in front of one of these specifiers, scanf() assigns the data to a double.
Using an L tells scanf() that the variable receiving the data is a long double.

If you are using a modern compiler that supports wide-character features added in
1995, you may use the I modifier with the ¢ format code to indicate a pointer to a wide
character of type wchar_t. You may also use the 1 modifier with the s format code to
indicate a pointer to a wide-character string. The 1 may also be used to modify a scanset
to indicate wide characters.

A white-space character in the format string causes scanf() to skip over one or
more white-space characters in the input stream. A white-space character is either a
space, a tab character, or a newline. In essence, one white-space character in the control
string will cause scanf() to read, but not store, any number (including zero) of white-
space characters up to the first non-white-space character.

A non-white-space character in the format string causes scanf() to read and discard
a matching character. For example, %d,%d causes scanf() to first read an integer, then
read and discard a comma, and finally read another integer. If the specified character is
not found, scanf{) will terminate.

All the variables used to receive values through scanf() must be passed by their
addresses. This means that all arguments must be pointers.

The input data items must be separated by spaces, tabs, or newlines. Punctuation
such as commas, semicolons, and the like do not count as separators. This means that

gscanf ("%d%d", &r, &C);

will accept an input of 10 20 but fail with 10,20.
An * placed after the % and before the format code will read data of the specified
type but suppress its assignment. Thus, the commana

i

o
§ scanf ("%d%*cxd", &x, &Y,

given the input 10/20, will place the value 10 into x, discard the divide sign, and give y
the value 20.

The format commands can specify a maximum field-length modifier. This is an
integer number placed between the % and the format code that limits the number of
characters read for any field. For example, if you wish to read no more than 20 characters
into address, you would write the following.

718

C++: The Complete Reference

scanf ("%20s", address);

If the input stream were greater than 20 characters, a subsequent call to input would
begin where this call left off. Input for a field may terminate before the maximum field
length is reached if a white space is encountered. In this case, scanf() moves on to the
next field.

Although spaces, tabs, and newlines are used as field separators, when reading

a single character, these are read like any other character. For example, with

an input
stream of x y,

scanf ("%c%c%c", &a, &b, &c);

will return with the character x in a, a space in b and the character y in c.
Beware: Any other characters in the control string—including spaces, tabs, and
newlines—will be used to match and discard characters from the in

put stream. Any
character that matches is discarded. For example,

given the input stream 10t20,

E scanf ("sdtsd", &x, &y);

wilt place 10 into x and 20 into y. The t is discarded because of the t in the
control string.

Another feature of scanf() is called a scanset. A scanset defines a set of characters
that will be read by scanf() and assigned to the corresponding character array. A
scanset is defined by putting the characters you want to scan for inside square brackets.
The beginning square bracket must be prefixed by a percent sign. For example, this
scanset tells scanf() to read only the characters A, B, and C:

i % [ABC]

When a scanset is used, scanf() continues to read characters and put them into the
corresponding character array until a character that is not in the scanset is encountered.
The corresponding variable must be a pointer to a character array. Upon return from
scanf(), the array will contain a null-terminated string comprised of the characters read.

You can specify an inverted set if the first character in the set is a A, W hen the A is
present, it instructs scanf() to accept any character that is 10t defined by the scanset.

For many implementations, you can specify a range using a hyphen. For example,
this tells scanf() to accept the characters A through Z.

Chapter 25: The C-Based 1/0 Functions 719

% [A-Z]

One important point to remember is that the scanset is case sensitive. Therefore,
if you want to scan for both upper- and lowercase letters, they must be specified
individually.

The scanf() function returns a number equal to the number of fields that were
successfully assigned values. This number will not include fields that were read but
not assigned because the * modifier was used to suppress the assignment. EOF is
returned if an error occurs before the first field is assigned.

Related functions are printf() and fscanf().

setbuf

#include <cstdio>
void setbuf (FILE *stream, char *buf);

The setbuf() function is used either to specify the buffer that strean will use or, if
called with buf set to null, to turn off buffering. If a programmer-defined buffer is to be
specified, it must be BUFSIZ characters long. BUFSIZ is defined in <cstdio>.

The setbuf() function returns no value.

Related functions are fopen(), fclose(), and setvbuf().

setvbuf

#include <cstdio>
int setvbuf(FILE *stream, char *buf, int mode, size_t size);

The setvbuf() function allows the programmer to specify the buffer, its size, and
its mode for the specified stream. The character array pointed to by bufis used as
the stream buffer for I/O operations. The size of the buffer is set by size, and miode
determines how buffering will be handled. If buf is null, setvbuf() will allocate its
own buffer.

The legal values of mode are _I0FBE, _IONBF, and _IOLBF. These are defined in
<cstdio>. When miode is set to _IOFBF, full buffering will take place. If inode is _TOLBE,
the stream will be line buffered, which means that the buffer will be flushed each time
a newline character is written for output streams; for input streams, input is buffered
until a newline character is read. If mode is _IONBF, no buffering takes place.

720 C++: The Complete Reference

The setvbuf() function returns zero on success, nonzero on failure.
A related function is setbuf().

sprintf

#include <cstdio>
int sprintf(char *buf, const char *format, ...);

The sprintf() function is identical to printf() except that the output is put into the

array pointed to by buf instead of being written to the console. See printf() for details.
The return value is equal to the number of characters actually placed into the array.
Related functions are printf() and fsprintf().

sscanf

#include <cstdio>
int sscanf (const char *buf, const char *format, ...);

The sscanf() function is identical to scanf() except that data is read from the array
pointed to by buf rather than stdin. See scanf() for details.

The return value is equal to the number of variables that were actually assigned
values. This number does not include fields that were skipped through the use of the
* format command modifier. A value of zero means that no fields were assigned, and
EOF indicates that an error occurred prior to the first assignment.

Related functions are scanf() and fscanf().

tmpfile

#include <cstdio>
FILE *tmpfile(void);

The tmpfile() function opens a temporary file for update and returns a pointer to
the stream. The function automatically uses a unique filename to avoid conflicts with
existing files.

The tmpfile() function returns a null pointer on failure; otherwise it returns
a pointer to the stream.

Chapter 25: The C-Based 1/0 Functions 721

The temporary file created by tmpfile() is automatically removed when the file is
closed or when the program terminates.
A related function is tmpnam().

tmpnam

#include <cstdio>
char *tmpnam(char *name);

The tmpnam() function generates a unique filename and stores it in the array pointed
to by name. This array must be at least L_tmpnam characters long. (L_tmpnam is defined
in <cstdio>.) The main purpose of tmpnam() is to generate a temporary filename that
is different from any other file in the current disk directory.

The function may be called up to TMP_MAX times. TMP_MAX is defined in
<cstdio>, and it will be at least 25. Each time tmpnam() is called, it will generate
anew temporary filename.

A pointer to name is returned on success; otherwise a null pointer is returned. If
name is null, the temporary filename is held in a static array owned by tmpnam(),
and a pointer to this array is returned. This array is overwritten by a subsequent call.

A related function is tmpfile().

ungetc

#include <cstdio>
int ungetc(int ch, FILE *stream);

The ungetc() function returns the character specified by the low-order byte of c/ to
the input stream stream. This character will then be obtained by the next read operation
on stream. A call to fflush(), fseek(), or rewind() undoes an ungetc() operation and
discards the character.

A one-cnaracter pushback is guaranteed; however, some implementations will
accept more.

You may not unget an EOF.

A call to ungete() clears the end-of-file flag associated with the specified stream. The
value of the file position indicator for a text stream is undefined until all pushed- back
characters are read, in which case it will be the same as it was prior to the first ungetc()
call. For binary streams, each ungetc() call decrements the file position indicator.

The return value is equal to ¢/ on success and EOF on failure.

722 C++: The Complete Reference

A related function is gete().
vprintf, vfprintf, and vsprintf

#include <cstdarg>

#include <cstdio>

int vprintf(char *format, va_list arg ptr);

int viprintf (FILE *stream, const char *format,
va_list arg ptr);

int vsprintf (char *buf, const char *format,
va_list arg ptr);

The functions vprintf(), vfprintf(), and vsprintf() are functionally equivalent to
printf(), fprintf(), and sprintf(), respectively, except that the argument list has been
replaced by a pointer to a list of arguments. This pointer must be of type va_list, which
is defined in the header <cstdarg> (or the C header file stdarg.h).

Related functions are va_arg(), va_start(), and va_end().

